Docosapentaenoic acid (22:5n-3): a review of its biological effects.
نویسندگان
چکیده
This article summarizes the current knowledge available on metabolism and the biological effects of n-3 docosapentaenoic acid (DPA). n-3 DPA has not been extensively studied because of the limited availability of the pure compound. n-3 DPA is an elongated metabolite of EPA and is an intermediary product between EPA and DHA. The literature on n-3 DPA is limited, however the available data suggests it has beneficial health effects. In vitro n-3 DPA is retro-converted back to EPA, however it does not appear to be readily metabolised to DHA. In vivo studies have shown limited conversion of n-3 DPA to DHA, mainly in liver, but in addition retro-conversion to EPA is evident in a number of tissues. n-3 DPA can be metabolised by lipoxygenase, in platelets, to form ll-hydroxy-7,9,13,16,19- and 14-hydroxy-7,10,12,16,19-DPA. It has also been reported that n-3 DPA is effective (more so than EPA and DHA) in inhibition of aggregation in platelets obtained from rabbit blood. In addition, there is evidence that n-3 DPA possesses 10-fold greater endothelial cell migration ability than EPA, which is important in wound-healing processes. An in vivo study has reported that n-3 DPA reduces the fatty acid synthase and malic enzyme activity levels in n-3 DPA-supplemented mice and these effects were stronger than the EPA-supplemented mice. Another recent in vivo study has reported that n-3 DPA may have a role in attenuating age-related decrease in spatial learning and long-term potentiation. However, more research remains to be done to further investigate the biological effects of this n-3 VLCPUFA.
منابع مشابه
Brain astrocyte synthesis of docosahexaenoic acid from n-3 fatty acids is limited at the elongation of docosapentaenoic acid.
The phospholipids, particularly phosphatidylethanolamine, of brain gray matter are enriched with docosahexaenoic acid (22:6n-3). The importance of uptake of preformed 22:6n-3 from plasma compared with synthesis from the alpha-linolenic acid (18:3n-3) precursor in brain is not known. Deficiency of 18:3n-3 results in a compensatory increase in the n-6 docosapentaenoic acid (22:5n-6) in brain, whi...
متن کاملDietary sources, current intakes, and nutritional role of omega-3 docosapentaenoic acid
Fish oils and long-chain omega-3 fatty acids are well recognized for their critical role in human diets. Docosapentaenoic acid (DPA, 22 : 5n-3) has always been a part of healthy nutrition, since infants obtain almost as much DPA as DHA from human milk. Fish oil supplements and ingredients, oily fish, and grass-fed beef can serve as the primary DPA sources for the general population. Although th...
متن کاملArtificial rearing with docosahexaenoic acid and n-6 docosapentaenoic acid alters rat tissue fatty acid composition.
Docosahexaenoic acid (DHA; 22:6n-3) and n-6 docosapentaenoic acid (DPAn-6; 22:5n-6) are components of enriched animal feed and oil derived from Schizochytrium species microalgae. A one generation, artificial rearing model from day 2 after birth onward (AR) and a dam-reared control group (DAM) were used to examine DPAn-6 feeding on the fatty acid composition of various rat tissues at 15 weeks of...
متن کاملDifferent dietary omega-3 sources during pregnancy and DHA in the developing rat brain
Dietary sources of the essential fatty acid a-linolenic acid (ALA; 18:3n-3) include green leaves, some seeds, nuts and cooking oils. The principal dietary source of the long-chain (LC) n-3 polyunsaturated fatty acids (PUFA) eicosapentaenoic acid (EPA; 20:5n-3), docosapentaenoic acid (DPA; 22:5n-3) and docosahexaenoic acid (DHA; 22:6n-3) is oily fish, yet it is estimated that only 27% of UKadult...
متن کاملN-3 fatty acid deficiency in the rat pineal gland: effects on phospholipid molecular species composition and endogenous levels of melatonin and lipoxygenase products.
N-3 essential fatty acid deficiency affects a number of biological and physiological processes. In this study, we investigated the effect of n-3 essential fatty acid status on two key pineal biochemical functions, melatonin production and lipoxygenation, using pineal glands from rats given an n-3-adequate or n-3-deficient diet. The pineal total lipid profile and phospholipid molecular species d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Progress in lipid research
دوره 50 1 شماره
صفحات -
تاریخ انتشار 2011